「java连接kudu」Java连接数据库代码
本篇文章给大家谈谈java连接kudu,以及Java连接数据库代码对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、如何实现消息推送功能
- 2、这几个大数据GitHub项目,太强了吧
- 3、java服务器推送消息给android
- 4、数据分析需要掌握哪些知识?
- 5、大数据三大核心技术:拿数据、算数据、卖数据!
- 6、kudu是什么意思?
如何实现消息推送功能
消息推送(Push)就是通过服务器把内容主动发送到客户端的过程。运营人员通过自己的产品或第三方工具对用户移动设备进行主动消息推送。完成推送后,消息通知会展示在移动设备的锁定屏幕及通知栏上,用户点击通知即可去往相应页面。
现在流行的消息推送实现方式,主要为长链接方式实现。其原理是客户端主动和服务器建立TCP长链接,长链接建立之后,客户端定期向服务器发送心跳包用于保持链接,当有消息要发送的时候,服务器可以直接通过这个已经建立好的长链接,将消息发送到客户端。
个推作为国内移动推送领域的早期进入者,于2010年推出个推消息推送SDK产品,十余年来持续为移动开发者提供稳定、高效、智能的消息推送服务,成功服务了人民日报、新华社、CCTV、新浪微博等在内的数十万APP客户。个推消息推送,也是运用长链接的方式实现消息推送的,其长链接稳定性高、存活好,消息送达率高。开发者通过集成个推消息推送SDK,即可简单、快捷地实现Android和iOS平台的消息推送功能,有效提高产品活跃度、增加用户留存。
如果您对个推消息推送感兴趣,欢迎前往个推开发者中心免费注册体验。
个推的合作客户
这几个大数据GitHub项目,太强了吧
大家好,我是 梦想家 Alex 。我们都知道 github 对于程序员们而言,就是一个巨大的“聚宝盆”,上面不仅有很多优质的开源项目,还有很多热爱开源分享的开发者。但如何从浩如烟海的宝藏中,筛选出适合自己的优质项目呢?本期内容,我就为大家推荐几个我认为还不错的大数据学习必备的 牛 X 项目,希望大家看完有所收获。
首推 heibaiying 的 BigData-Notes,该项目目前已经有高达 10.2K 的star,正如该仓库的介绍上简短几个字:大数据入门指南。这个项目也是我认为目前 最适合初学者学习和参考的项目 。
为什么说这个项目适合大数据初学者呢,可以通过观察项目的介绍文档,该项目包含了大数据学习必须要掌握的几种组件,包括 Hadoop,Hive,Spark,Flink,Kafka,Zookeeper,Flume,Sqoop,Azkaban,以及 Scala 函数式编程语言的教程 ,可谓是非常的系统全面
我们再借助谷歌插件 Octotree 观察项目的结构,可以看到该项目主要分为 code,notes,pictures,resources 四个目录
其中 code 目录主要用来存放各个组件使用相关的代码,正如统计的结果一样,这个项目中 Java 代码占了 94.8%,Scala 占了 5.2%,所以对于喜欢用 Java 编写代码的小伙伴们来说,这是一个不容错过的宝藏学习机会。
notes 部分主要存放相关组件的介绍和使用文档,其中 installation 子目录主要存放了相关组件编译,以及在Linux环境下各个组件的安装,单机/集群环境搭建的教程,我看过了内容,介绍的非常清晰详细。
另外两个目录 pictures 和 resources 就不做过多介绍了,一个是存放相关的图片教程,另一个是存放编写的代码中所需要用到的文本文件。
这个项目同样给力,是由 BAT 高级大数据架构师 王知无 创建的,该项目目前也已经斩获高达 5.2k star,是为数不多, 集基础学习和进阶实战 于一体的优质项目。
该项目按照大数据不同阶段的学习,所列举不同的文章干货
大数据开发基础篇
大数据框架学习篇
大数据开发实战进阶篇
大数据开发面试篇
从不同的分类足以见 王老师 的用心。同时,王知无前辈也是 51CTO 上的认证讲师,来看看官方的介绍 。
相信很多同学在学习大数据的过程中,不清楚 Java 需要学习哪些内容,掌握到什么程度,这个时候完全可以借鉴王老师的这个仓库内容。
同时,学习这个仓库的内容,可以学习到作者作为架构师本身对于 JVM,分布式理论和基础,大数据框架基石之网路通信Netty,以及各个框架的源码学习,可谓“ 真.宝藏仓库 ”
除了基础的理论学习以外,还有大量实战性的内容可以借鉴参考
以及大量的面试题,还有自己从零到大数据专家一路走来的心路历程,学习路径指南,和自己对于技术学习的一些深入思考,相信大家拜读过后一定能收获满满,
这个项目比较特殊,是一个国外开发者开源的项目,英文翻译过来的意思是“很棒的大数据”,实际上呢~他列举的是很多很棒的大数据框架、资源和其他很棒的精选列表。灵感来自 awesome-php 、 awesome-python 、 awesome-ruby 、 hadoopecosystemtable 和 big-data 。目前也已经斩获 10.2K 的 star,非常强势。
为了方便阅读,我将其全部翻译成中文进行展示。
我们跳转到 分布式编程,可以看到很多我们熟悉的技术,例如 Flink,Spark,Pig,MapReduce 等等 ....
亦或者“分布式文件系统”,我们所熟知的 HDFS,Kudu,GFS ...
点击对应的链接,可以跳转到对应的官方介绍页,方便我们减少搜索成本,快速了解不同领域大数据常用的技术组件,为我们之后做技术调研省了很多的时间。
让我厚颜无耻的夹带一下“私货”。这是我在今年年初的时候,创建的一个仓库,目前也已经有了快 200 的star 。从资历和star的数量显然不能跟前面几个大佬相比,但却是我第一次花费了大量精力,将一个项目像孩子一样进行“培养”。
为了设计一个好看的图标,还花了不少的精力。设置不同媒体平台的徽标设计,还参考了像 JavaGuide 这样的头部项目,也算是在亲力亲为的这个过程中,学到了不少东西。
可以放点内容给大家show一下
另外,我还开设了“福利”专栏,将自己学习过程中收集到的学习干货毫无保留地分享给大家,方便大家获取。
显而易见,这个是专注于 flink 学习的开源项目,其中的内容包含Flink 入门、概念、原理、实战、性能调优、源码解析等等,目前已经斩获了 10.5k 的 star,非常强势。
其维护的开发人员也是非常用心负责,一路跟随 flink 的版本,不停的在维护更新 。
同时,主要维护者 zisheng 还将 flink 的研究做到了极致,不仅有 flink 成体系的博客链接,还有对应的源码系列。
还自己创建了专栏《从1到100深入学习Flink》,并将大家学习过程中有疑惑的地方解决过程统一记录下来,方便有需要的同学查看。虽然是付费的星球专享,但我觉得是真的值!感兴趣的话大家可以自行去了解。
java服务器推送消息给android
几种常见的解决方案实现原理
1)轮询(Pull)方式:客户端定时向服务器发送询问消息,一旦服务器有变化则立即同步消息。
2)SMS(Push)方式:通过拦截SMS消息并且解析消息内容来了解服务器的命令,但这种方式一般用户在经济上很难承受。
3)持久连接(Push)方式:客户端和服务器之间建立长久连接,这样就可以实现消息的及时行和实时性。
3、消息推送解决方案概述
A、C2DM云端推送方案
在Android手机平台上,Google提供了C2DM(Cloudto Device Messaging)服务。Android
Cloud to Device Messaging (C2DM)是一个用来帮助开发者从服务器向Android应用程序发送数据的服务。该服务提供了一个简单的、轻量级的机制,允许服务器可以通知移动应用程序直接与服务器进行通信,以便于从服务器获取应用程序更新和用户数据。
该方案存在的主要问题是C2DM需要依赖于Google官方提供的C2DM服务器,由于国内的网络环境,这个服务经常不可用。
B、MQTT协议实现Android推送
采用MQTT协议实现Android推送功能也是一种解决方案。MQTT是一个轻量级的消息发布/订阅协议,它是实现基于手机客户端的消息推送服务器的理想解决方案。
wmqtt.jar
是IBM提供的MQTT协议的实现。我们可以从这里()下载该项目的实例代码,并且可以找到一个采用PHP书写的服务器端实现()。
C、RSMB实现推送功能
Really Small Message Broker (RSMB)
,是一个简单的MQTT代理,同样由IBM提供,其查看地址是:。缺省打开1883端口,应用程序当中,它负责接收来自服务器的消息并将其转发给指定的移动设备。SAM是一个针对MQTT写的PHP库。我们可以从这个地址下载它.
D、XMPP协议实现Android推送
Google官方的C2DM服务器底层也是采用XMPP协议进行的封装。XMPP(可扩展通讯和表示协议)是基于可扩展标记语言(XML)的协议,它用于即时消息(IM)以及在线探测。这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息。
androidpn是一个基于XMPP协议的java开源Android push notification实现。它包含了完整的客户端和服务器端。但也存在一些不足之处:
1)
比如时间过长时,就再也收不到推送的信息了。
2)性能上也不够稳定。
3)如果将消息从服务器上推送出去,就不再管理了,不管消息是否成功到达客户端手机上。
如果我们要使用androidpn,则还需要做大量的工作,需要理解XMPP协议、理解Androidpn的实现机制,需要调试内部存在的BUG。
数据分析需要掌握哪些知识?
数据分析需要学习以下几点:
一、统计学。二、编程能力。三、数据库。四、数据仓库。五、数据分析方法。六、数据分析工具。
想要成为数据分析师应该重点学习以下两点:
1.python、SQL、R语言
这些都是最基础的工具,python都是最好的数据入门语言,而R语言倾向于统计分析、绘图等,SQL是数据库。既然是数据分析,平时更多的时间就是与数据分析打交道,数据采集、数据清洗、数据可视化等一系列数据分析工作都需要上面的工具来完成。
2.业务能力
数据分析师存在的意义就是通过数据分析来帮助企业实现业务增长,所以业务能力也是必须。企业的产品、用户、所处的市场环境以及企业的员工等都是必须要掌握的内容,通过这些内容建立帮助企业建立具体的业务指标、辅助企业进行运营决策等。
当然这些都是数据分析师最基本也是各位想转行的小伙伴需要重点学习的内容,以后想要有更好的发展,还需要学习更多的技能,例如企业管理,人工智能等。
关于数据分析师的学习可以到CDA数据分析认证中心看看。全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。
大数据三大核心技术:拿数据、算数据、卖数据!
大数据的由来
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
1
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大数据的应用领域
大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。
制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车 行业,利用大数据和物联网技术的无人驾驶 汽车 ,在不远的未来将走入我们的日常生活。
互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。
体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。
安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。
个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。
大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。
大数据方面核心技术有哪些?
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。
数据采集与预处理
对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。
Flume NG
Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。
NDC
Logstash
Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。
Sqoop
Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapReduce 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。
流式计算
流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。
Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。
Zookeeper
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。
数据存储
Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。
HBase
HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
Phoenix
Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。
Yarn
Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。
Mesos
Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。
Redis
Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。
Atlas
Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。
Kudu
Kudu是围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Kudu的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。
在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。
数据清洗
MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。
随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。
Oozie
Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。
Azkaban
Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。
流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求
数据查询分析
Hive
Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapReduce jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapReduce程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。
Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map-shuffle-reduce-map-shuffle-reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。
Impala
Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapReduce任务,相比Hive没了MapReduce启动时间。
Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map-reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。
Spark
Spark拥有Hadoop MapReduce所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
Nutch
Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。
Solr
Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。
Elasticsearch
Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。
数据可视化
对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数等。
在上面的每一个阶段,保障数据的安全是不可忽视的问题。
基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。
控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。
简单说有三大核心技术:拿数据,算数据,卖数据。
kudu是什么意思?
Kudu是一个列式存储的用于快速分析的NoSQL数据库,提供了类似SQL的查询语句,与RDBMS十分类似,有**PRIMARY KEY **,基于主键查询而不是HBase的RowKey。
kudu拥有毫秒级延迟
与其他大数据数据库不同,Kudu不仅仅是一个文件格式。行访问达到毫秒级延迟,支持C++ JAVA, API PyThon API 拥有简单好用的API。
kudu能与Hadoop生态系统无缝对接
你可以使用Java Client实时导入数据,同时也支持Spark(运算) impala(分析工具,比Hive快) MapReduce HDFS HBase 很容易从HDFS中获取数据,占用内存小于1G。
分布式和容错机制Kudu通过把tables切分成tablets,每个表都可以配置切分的哈希,分区和组合。Kudu使用了Raft来复制给定的操作,保证了数据同时存储在两个节点上,因此不村子单点故障。
Kudu是为我们下一代设计的好软件,大家可以了解一下!
java连接kudu的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于Java连接数据库代码、java连接kudu的信息别忘了在本站进行查找喔。