「进程调度算法模拟java」进程调度算法模拟程序设计
本篇文章给大家谈谈进程调度算法模拟java,以及进程调度算法模拟程序设计对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、操作系统进程调度算法模拟
- 2、求一个基于优先级的时间片轮转调度算法。实在是不太会做了,没思路。要求java 要求: (1)设系统
- 3、进程调度算法模拟程序设计
- 4、处理机调度模拟程序:选择一个调度算法,实现处理机调度。
- 5、用java实现一个模拟操作系统内核运行的程序。(1)进程控制:其中包括进程创建与撤销
- 6、优先级调度算法如何用JAVA实现
操作系统进程调度算法模拟
第一部分: 实时调度算法介绍
对于什么是实时系统,POSIX 1003.b作了这样的定义:指系统能够在限定的响应时间内提供所需水平的服务。而一个由Donald Gillies提出的更加为大家接受的定义是:一个实时系统是指计算的正确性不仅取决于程序的逻辑正确性,也取决于结果产生的时间,如果系统的时间约束条件得不到满足,将会发生系统出错。
实时系统根据其对于实时性要求的不同,可以分为软实时和硬实时两种类型。硬实时系统指系统要有确保的最坏情况下的服务时间,即对于事件的响应时间的截止期限是无论如何都必须得到满足。比如航天中的宇宙飞船的控制等就是现实中这样的系统。其他的所有有实时特性的系统都可以称之为软实时系统。如果明确地来说,软实时系统就是那些从统计的角度来说,一个任务(在下面的论述中,我们将对任务和进程不作区分)能够得到有确保的处理时间,到达系统的事件也能够在截止期限到来之前得到处理,但违反截止期限并不会带来致命的错误,像实时多媒体系统就是一种软实时系统。
一个计算机系统为了提供对于实时性的支持,它的操作系统必须对于CPU和其他资源进行有效的调度和管理。在多任务实时系统中,资源的调度和管理更加复杂。本文下面将先从分类的角度对各种实时任务调度算法进行讨论,然后研究普通的 Linux操作系统的进程调度以及各种实时Linux系统为了支持实时特性对普通Linux系统所做的改进。最后分析了将Linux操作系统应用于实时领域中时所出现的一些问题,并总结了各种实时Linux是如何解决这些问题的。
1. 实时CPU调度算法分类
各种实时操作系统的实时调度算法可以分为如下三种类别[Wang99][Gopalan01]:基于优先级的调度算法(Priority-driven scheduling-PD)、基于CPU使用比例的共享式的调度算法(Share-driven scheduling-SD)、以及基于时间的进程调度算法(Time-driven scheduling-TD),下面对这三种调度算法逐一进行介绍。
1.1. 基于优先级的调度算法
基于优先级的调度算法给每个进程分配一个优先级,在每次进程调度时,调度器总是调度那个具有最高优先级的任务来执行。根据不同的优先级分配方法,基于优先级的调度算法可以分为如下两种类型[Krishna01][Wang99]:
静态优先级调度算法:
这种调度算法给那些系统中得到运行的所有进程都静态地分配一个优先级。静态优先级的分配可以根据应用的属性来进行,比如任务的周期,用户优先级,或者其它的预先确定的策略。RM(Rate-Monotonic)调度算法是一种典型的静态优先级调度算法,它根据任务的执行周期的长短来决定调度优先级,那些具有小的执行周期的任务具有较高的优先级。
动态优先级调度算法:
这种调度算法根据任务的资源需求来动态地分配任务的优先级,其目的就是在资源分配和调度时有更大的灵活性。非实时系统中就有很多这种调度算法,比如短作业优先的调度算法。在实时调度算法中, EDF算法是使用最多的一种动态优先级调度算法,该算法给就绪队列中的各个任务根据它们的截止期限(Deadline)来分配优先级,具有最近的截止期限的任务具有最高的优先级。
1.2. 基于比例共享调度算法
虽然基于优先级的调度算法简单而有效,但这种调度算法提供的是一种硬实时的调度,在很多情况下并不适合使用这种调度算法:比如象实时多媒体会议系统这样的软实时应用。对于这种软实时应用,使用一种比例共享式的资源调度算法(SD算法)更为适合。
比例共享调度算法指基于CPU使用比例的共享式的调度算法,其基本思想就是按照一定的权重(比例)对一组需要调度的任务进行调度,让它们的执行时间与它们的权重完全成正比。
我们可以通过两种方法来实现比例共享调度算法[Nieh01]:第一种方法是调节各个就绪进程出现在调度队列队首的频率,并调度队首的进程执行;第二种做法就是逐次调度就绪队列中的各个进程投入运行,但根据分配的权重调节分配个每个进程的运行时间片。
比例共享调度算法可以分为以下几个类别:轮转法、公平共享、公平队列、彩票调度法(Lottery)等。
比例共享调度算法的一个问题就是它没有定义任何优先级的概念;所有的任务都根据它们申请的比例共享CPU资源,当系统处于过载状态时,所有的任务的执行都会按比例地变慢。所以为了保证系统中实时进程能够获得一定的CPU处理时间,一般采用一种动态调节进程权重的方法。
1.3. 基于时间的进程调度算法
对于那些具有稳定、已知输入的简单系统,可以使用时间驱动(Time-driven:TD)的调度算法,它能够为数据处理提供很好的预测性。这种调度算法本质上是一种设计时就确定下来的离线的静态调度方法。在系统的设计阶段,在明确系统中所有的处理情况下,对于各个任务的开始、切换、以及结束时间等就事先做出明确的安排和设计。这种调度算法适合于那些很小的嵌入式系统、自控系统、传感器等应用环境。
这种调度算法的优点是任务的执行有很好的可预测性,但最大的缺点是缺乏灵活性,并且会出现有任务需要被执行而CPU却保持空闲的情况。
2. 通用Linux系统中的CPU调度
通用Linux系统支持实时和非实时两种进程,实时进程相对于普通进程具有绝对的优先级。对应地,实时进程采用SCHED_FIFO或者SCHED_RR调度策略,普通的进程采用SCHED_OTHER调度策略。
在调度算法的实现上,Linux中的每个任务有四个与调度相关的参数,它们是rt_priority、policy、priority(nice)、counter。调度程序根据这四个参数进行进程调度。
在SCHED_OTHER 调度策略中,调度器总是选择那个priority+counter值最大的进程来调度执行。从逻辑上分析,SCHED_OTHER调度策略存在着调度周期(epoch),在每一个调度周期中,一个进程的priority和counter值的大小影响了当前时刻应该调度哪一个进程来执行,其中 priority是一个固定不变的值,在进程创建时就已经确定,它代表了该进程的优先级,也代表这该进程在每一个调度周期中能够得到的时间片的多少; counter是一个动态变化的值,它反映了一个进程在当前的调度周期中还剩下的时间片。在每一个调度周期的开始,priority的值被赋给 counter,然后每次该进程被调度执行时,counter值都减少。当counter值为零时,该进程用完自己在本调度周期中的时间片,不再参与本调度周期的进程调度。当所有进程的时间片都用完时,一个调度周期结束,然后周而复始。另外可以看出Linux系统中的调度周期不是静态的,它是一个动态变化的量,比如处于可运行状态的进程的多少和它们priority值都可以影响一个epoch的长短。值得注意的一点是,在2.4以上的内核中, priority被nice所取代,但二者作用类似。
可见SCHED_OTHER调度策略本质上是一种比例共享的调度策略,它的这种设计方法能够保证进程调度时的公平性--一个低优先级的进程在每一个epoch中也会得到自己应得的那些CPU执行时间,另外它也提供了不同进程的优先级区分,具有高priority值的进程能够获得更多的执行时间。
对于实时进程来说,它们使用的是基于实时优先级rt_priority的优先级调度策略,但根据不同的调度策略,同一实时优先级的进程之间的调度方法有所不同:
SCHED_FIFO:不同的进程根据静态优先级进行排队,然后在同一优先级的队列中,谁先准备好运行就先调度谁,并且正在运行的进程不会被终止直到以下情况发生:1.被有更高优先级的进程所强占CPU;2.自己因为资源请求而阻塞;3.自己主动放弃CPU(调用sched_yield);
SCHED_RR:这种调度策略跟上面的SCHED_FIFO一模一样,除了它给每个进程分配一个时间片,时间片到了正在执行的进程就放弃执行;时间片的长度可以通过sched_rr_get_interval调用得到;
由于Linux系统本身是一个面向桌面的系统,所以将它应用于实时应用中时存在如下的一些问题:
Linux系统中的调度单位为10ms,所以它不能够提供精确的定时;
当一个进程调用系统调用进入内核态运行时,它是不可被抢占的;
Linux内核实现中使用了大量的封中断操作会造成中断的丢失;
由于使用虚拟内存技术,当发生页出错时,需要从硬盘中读取交换数据,但硬盘读写由于存储位置的随机性会导致随机的读写时间,这在某些情况下会影响一些实时任务的截止期限;
虽然Linux进程调度也支持实时优先级,但缺乏有效的实时任务的调度机制和调度算法;它的网络子系统的协议处理和其它设备的中断处理都没有与它对应的进程的调度关联起来,并且它们自身也没有明确的调度机制;
3. 各种实时Linux系统
3.1. RT-Linux和RTAI
RT -Linux是新墨西哥科技大学(New Mexico Institute of Technology)的研究成果[RTLinuxWeb][Barabanov97]。它的基本思想是,为了在Linux系统中提供对于硬实时的支持,它实现了一个微内核的小的实时操作系统(我们也称之为RT-Linux的实时子系统),而将普通Linux系统作为一个该操作系统中的一个低优先级的任务来运行。另外普通Linux系统中的任务可以通过FIFO和实时任务进行通信。RT-Linux的框架如图 1所示:
图 1 RT-Linux结构
RT -Linux的关键技术是通过软件来模拟硬件的中断控制器。当Linux系统要封锁CPU的中断时时,RT-Linux中的实时子系统会截取到这个请求,把它记录下来,而实际上并不真正封锁硬件中断,这样就避免了由于封中断所造成的系统在一段时间没有响应的情况,从而提高了实时性。当有硬件中断到来时, RT-Linux截取该中断,并判断是否有实时子系统中的中断例程来处理还是传递给普通的Linux内核进行处理。另外,普通Linux系统中的最小定时精度由系统中的实时时钟的频率决定,一般Linux系统将该时钟设置为每秒来100个时钟中断,所以Linux系统中一般的定时精度为 10ms,即时钟周期是10ms,而RT-Linux通过将系统的实时时钟设置为单次触发状态,可以提供十几个微秒级的调度粒度。
RT-Linux实时子系统中的任务调度可以采用RM、EDF等优先级驱动的算法,也可以采用其他调度算法。
RT -Linux对于那些在重负荷下工作的专有系统来说,确实是一个不错的选择,但他仅仅提供了对于CPU资源的调度;并且实时系统和普通Linux系统关系不是十分密切,这样的话,开发人员不能充分利用Linux系统中已经实现的功能,如协议栈等。所以RT-Linux适合与工业控制等实时任务功能简单,并且有硬实时要求的环境中,但如果要应用与多媒体处理中还需要做大量的工作。
意大利的RTAI( Real-Time Application Interface )源于RT-Linux,它在设计思想上和RT-Linux完全相同。它当初设计目的是为了解决RT-Linux难于在不同Linux版本之间难于移植的问题,为此,RTAI在 Linux 上定义了一个实时硬件抽象层,实时任务通过这个抽象层提供的接口和Linux系统进行交互,这样在给Linux内核中增加实时支持时可以尽可能少地修改 Linux的内核源代码。
3.2. Kurt-Linux
Kurt -Linux由Kansas大学开发,它可以提供微秒级的实时精度[KurtWeb] [Srinivasan]。不同于RT-Linux单独实现一个实时内核的做法,Kurt -Linux是在通用Linux系统的基础上实现的,它也是第一个可以使用普通Linux系统调用的基于Linux的实时系统。
Kurt-Linux将系统分为三种状态:正常态、实时态和混合态,在正常态时它采用普通的Linux的调度策略,在实时态只运行实时任务,在混合态实时和非实时任务都可以执行;实时态可以用于对于实时性要求比较严格的情况。
为了提高Linux系统的实时特性,必须提高系统所支持的时钟精度。但如果仅仅简单地提高时钟频率,会引起调度负载的增加,从而严重降低系统的性能。为了解决这个矛盾, Kurt-Linux采用UTIME所使用的提高Linux系统中的时钟精度的方法[UTIMEWeb]:它将时钟芯片设置为单次触发状态(One shot mode),即每次给时钟芯片设置一个超时时间,然后到该超时事件发生时在时钟中断处理程序中再次根据需要给时钟芯片设置一个超时时间。它的基本思想是一个精确的定时意味着我们需要时钟中断在我们需要的一个比较精确的时间发生,但并非一定需要系统时钟频率达到此精度。它利用CPU的时钟计数器TSC (Time Stamp Counter)来提供精度可达CPU主频的时间精度。
对于实时任务的调度,Kurt-Linux采用基于时间(TD)的静态的实时CPU调度算法。实时任务在设计阶段就需要明确地说明它们实时事件要发生的时间。这种调度算法对于那些循环执行的任务能够取得较好的调度效果。
Kurt -Linux相对于RT-Linux的一个优点就是可以使用Linux系统自身的系统调用,它本来被设计用于提供对硬实时的支持,但由于它在实现上只是简单的将Linux调度器用一个简单的时间驱动的调度器所取代,所以它的实时进程的调度很容易受到其它非实时任务的影响,从而在有的情况下会发生实时任务的截止期限不能满足的情况,所以也被称作严格实时系统(Firm Real-time)。目前基于Kurt-Linux的应用有:ARTS(ATM Reference Traffic System)、多媒体播放软件等。另外Kurt-Linux所采用的这种方法需要频繁地对时钟芯片进行编程设置。
3.3. RED-Linux
RED -Linux是加州大学Irvine分校开发的实时Linux系统[REDWeb][ Wang99],它将对实时调度的支持和Linux很好地实现在同一个操作系统内核中。它同时支持三种类型的调度算法,即:Time-Driven、 Priority-Dirven、Share-Driven。
为了提高系统的调度粒度,RED-Linux从RT-Linux那儿借鉴了软件模拟中断管理器的机制,并且提高了时钟中断频率。当有硬件中断到来时,RED-Linux的中断模拟程序仅仅是简单地将到来的中断放到一个队列中进行排队,并不执行真正的中断处理程序。
另外为了解决Linux进程在内核态不能被抢占的问题, RED-Linux在Linux内核的很多函数中插入了抢占点原语,使得进程在内核态时,也可以在一定程度上被抢占。通过这种方法提高了内核的实时特性。
RED-Linux的设计目标就是提供一个可以支持各种调度算法的通用的调度框架,该系统给每个任务增加了如下几项属性,并将它们作为进程调度的依据:
Priority:作业的优先级;
Start-Time:作业的开始时间;
Finish-Time:作业的结束时间;
Budget:作业在运行期间所要使用的资源的多少;
通过调整这些属性的取值及调度程序按照什么样的优先顺序来使用这些属性值,几乎可以实现所有的调度算法。这样的话,可以将三种不同的调度算法无缝、统一地结合到了一起。
求一个基于优先级的时间片轮转调度算法。实在是不太会做了,没思路。要求java 要求: (1)设系统
cpu进程调度模拟
四个队列是优先级队列(优先级高的在前面)
可以使用结构体做队列的节点
时间片轮转就是指定一个执行时间,时间一到就处理下一个进程,将当前进程进行状态转换(也就是换着状态需要向其放入相应的队列中,优先级队列)
理清头绪的话程序不算太复杂但也很麻烦
进程调度算法模拟程序设计
public class PrivilegeProcess {
public static void main(String[] args) {
MyQueue myqueue = new MyQueue();//声明队列
PCB[] pcb = {new PCB(001,8,1),new PCB(002,7,9),new PCB(003,3,8),new PCB(004,1,7),new PCB(005,7,4)};
PCB para = new PCB();
for(int i=0;ipcb.length;i++){//初始化后首先执行一次排序,这里使用的是选择排序,优先级高的先入队
for(int j=i;jpcb.length;j++){
if(pcb[i].privilege pcb[j].privilege){
para = pcb[i];
pcb[i] = pcb[j];
pcb[j] = para;
}
}
}
System.out.println("初次入队后各进程的顺序:");
for(int i=0;ipcb.length;i++){
System.out.println("初次入队后 # processname : " + pcb[i].name + " totaltime : " + pcb[i].totaltime + " privilege :" + pcb[i].privilege);
}
System.out.println();
myqueue.start(pcb);
}
}
class MyQueue {
int index = 0;
PCB[] pc = new PCB[5];
PCB[] pc1 = new PCB[4];
PCB temp = new PCB();
public void enQueue(PCB process){//入队算法
if(index==5){
System.out.println("out of bounds !");
return;
}
pc[index] = process;
index++;
}
public PCB deQueue(){//出队算法
if(index==0)
return null;
for(int i=0;ipc1.length;i++){
pc1[i] = pc[i+1];
}
index--;
temp = pc[0];
for(int i=0;ipc1.length;i++){
pc[i] = pc1[i];
}
return temp;
}
public void start(PCB[] pc){//显示进程表算法
while(pc[0].isNotFinish==true||pc[1].isNotFinish==true||pc[2].isNotFinish==true||pc[3].isNotFinish==true||pc[4].isNotFinish==true){
//*注意:||运算符,所有表达式都为false结果才为false,否则为true
for(int i=0;ipc.length;i++){
pc[i].run(this);
}
System.out.println();
for(int i=0;ipc.length;i++){//所有进程每执行完一次时间片长度的运行就重新按优先级排列一次
for(int j=i;jpc.length;j++){
if(pc[i].privilege pc[j].privilege){
temp = pc[i];
pc[i] = pc[j];
pc[j] = temp;
}
}
}
}
}
}
class PCB {//声明进程类
int name,totaltime,runtime,privilege;
boolean isNotFinish;
public PCB(){
}
public PCB(int name, int totaltime, int privilege){
this.name = name;//进程名
this.totaltime = totaltime;//总时间
this.privilege = privilege;//优先级别
this.runtime = 2;//时间片,这里设值为2
this.isNotFinish = true;//是否执行完毕
System.out.println("初始值: processname : " + name + " totaltime : " + totaltime + " privilege :" + privilege );
System.out.println();
}
public void run (MyQueue mq){//进程的基于时间片的执行算法
if(totaltime1){
totaltime-=runtime;//在总时间大于1的时候,总时间=总时间-时间片
privilege--;
System.out.println(" processname : " + name + " remaintime : " + totaltime + " privilege :" + privilege );
}else if(totaltime==1){
totaltime--;//在总时间为1时,执行时间为1
privilege--;
System.out.println(" processname : " + name + " remaintime : " + totaltime + " privilege :" + privilege );
}else{
isNotFinish = false;//总时间为0,将isNotFinish标记置为false
}
if(isNotFinish==true){
mq.deQueue();
mq.enQueue(this);
}
}
}
处理机调度模拟程序:选择一个调度算法,实现处理机调度。
七、源程序:
#include stdio.h
int m1; //共享变量
int m2; //共享变量
struct{
int id; //进程标号
int waiter1; //指针,用于标识等待队列的下一个进程
int priority; //进程优先级
char status; //进程状态
}pcb[4];
struct{
int value; //信号量的值
int waiter2; //指针,用于标识等待此信号量队列的第一个进程
}sem[3];
char stack[11][4]; //现场保护堆栈
int i; //cpu中的通用寄存器
int ep; //当前运行进程指针
char addr; //程序运行时的地址
void init(); //初始化
int find(); //找出就绪进程
int w2(); //
int process1(); //进程1
int process2(); //进程2
int process3(); //进程3
int p(int,int ,char); //P原语
int v(int,int ,char); //V原语
main()
{
init();
printf("系统程序开始执行\n");
for(;;){
if(find()!=0) //找出就绪进程
w2(); //进程调度
else break;//退出程序
}
printf("系统程序结束\n");
}
void init() //初始化进程
{
int j,k;
pcb[0].status='w'; //进程状态设置为等待
pcb[0].priority=4; //进程的优先级别
for(j=1;j=3;j++){
pcb[j].id=j; //进程编号
pcb[j].status='r'; //进程状态设置为就绪
pcb[j].waiter1=0; //进程指针初始化为0
pcb[j].priority=j; //设置进程优先级
}
for(j=1;j=2;j++){
sem[j].value=1; //信号量赋值为1
sem[j].waiter2=0; //等待信号量队列的初始化
}
i=0; //CPU通用寄存器初始化
ep=0; //
addr='0'; //程序运行地址
m1=0; //共享变量初始化
m2=0; //共享变量初始化
for(j=1;j=10;j++){
for(k=1;k=3;k++)
stack[j][k]='0'; //现场保护堆栈初始化
}
}
int find(){ //查找初始化变量
int j;
for(j=1;j=3;j++)
if(pcb[j].status=='r') return(j); //如果pcb队列中有就绪进程,返回进程编号
return(0);
}
int w2(){ //进程调度程序
int pd;
pd=find(); //找出就绪进程编号
if(pd==0) return(0); //如果没有找到就绪进程,退出程序
else if(ep==0){ //如果当前运行进程是否为0
pcb[pd].status='e'; //直接将当前进程设置为运行状态
ep=pd; //当前运行进程设置为pd
printf("进程%d正在执行\n",ep);
}
else
if(pcb[pd].prioritypcb[ep].priority)//如果当前进程比待调入进程优先级进行比较
{//调入进程优先级别高
pcb[ep].status='r'; //把CPU运行进程执行状态设置为就绪
printf("读取进程%d\n",pcb[pd].id);
pcb[pd].status='e'; //将待调入进程执行状态设置为执行
ep=pd; //将当前运行进程指针为待调入进程
}
printf("运行进程%d\n",ep);
i=stack[1][ep]; //恢复进程的通用寄存器中的值和运行地址。
addr=stack[2][ep];
switch(ep){ //根据当前运行的进程选择运行
case 1:process1();
break;
case 2:process2();
break;
case 3:process3();
break;
default:printf("当前进程出现错误%d\n",ep);
break;
}
}
int process1(){//进程1
if(addr=='m') goto m; //如果当前运行地址是m,跳到m运行
i=1;
a:
printf("进程1在信号量sem[1]上调用P操作\n");
if(p(1,1,'m')==0) return(0); //进行p操作,m表示程序执行到m
else goto m;
m:
printf("打印进程1...m1=%d\n",m1); //进程1的操作,打印,寄存器i+5
printf("打印进程1...i=%d\n",i);
i+=5;
goto a; //跳回a执行
}
int process2(){//进程分为3部分
if(addr=='m') goto m;
if(addr=='n') goto n;
i=1;
a:
printf("进程2在信号量sem[2]上调用P操作\n");
if(p(2,2,'m')==0) return(0);
m:
m1=2*m2;
printf("进程2在信号量sem[1]上调用V操作m1=%d\n",m1);
if(v(1,2,'n')==0) return(0);
else{
n:
printf("打印进程2...i=%d\n",i);
i+=10;
goto a;
}
}
int process3(){
if(addr=='m') goto m;
if(addr=='n') goto n;
i=1;
a:
if(i4){
printf("进程3在信号量sem[2]上调用P操作\n");
if(p(2,3,'n')==0) return(0);
}
n:
m2=i;
printf("进程3在sem[2]信号量上调用V操作m=%d\n",m2);
if(v(2,3,'m')==0) return(0);
else{
m:
i+=1;
goto a;
}
}
int p(int se,int p,char ad){
int w;
sem[se].value--; //信号量减1
if(sem[se].value==0) return(1); //如果信号量=0,返回1,说明阻塞
printf("阻塞当前进程%d\n",p);
pcb[p].status='w'; //改变进程状态
ep=0; //运行进程为空
pcb[p].waiter1=0; //设为尾末
w=sem[se].waiter2; //找出等待队列的队尾
if(w==0) sem[se].waiter2=p; //插入等待队列
else{
while(pcb[w].waiter1!=0) w=pcb[w].waiter1;
pcb[w].waiter1=p;
}
stack[1][p]=i; //保存现场
stack[2][p]=ad;
return(0);
}
int v(int se,int p,char ad){
int w;
sem[se].value++; //信号量加1
if(sem[se].value0) return(1); //信号量0,无等待进程
w=sem[se].waiter2; //返回第一个等待进程
sem[se].waiter2=pcb[w].waiter1; //调整位置
pcb[w].status='r'; //进程改变状态
printf("唤醒进程%d\n",w);
stack[1][p]=i; //进程状态进栈
stack[2][p]=ad;
return(0);
}
用java实现一个模拟操作系统内核运行的程序。(1)进程控制:其中包括进程创建与撤销
在编写Java程序时,有时候需要在Java程序中执行另外一个程序。
1、启动程序Java提供了两种方法用来启动其它程序:
(1)使用Runtime的exec()方法
(2)使用ProcessBuilder的start()方法
不管在哪种操作系统下,程序具有基本类似的一些属性。一个程序启动后就程序操作系统的一个进程,进程在执行的时候有自己的环境变量、有自己的工作目录。Runtime和ProcessBuilder提供了不同的方式来启动程序,设置启动参数、环境变量和工作目录。
能够在Java中执行的外部程序,必须是一个实际存在的可执行文件,对于shell下的内嵌命令是不能直接执行的。
采用Runtime的exec执行程序时,首先要使用Runtime的静态方法得到一个Runtime,然后调用Runtime的exec方
法。可以将要执行的外部程序和启动参数、环境变量、工作目录作为参数传递给exec方法,该方法执行后返回一个Process代表所执行的程序。
Runtime有六个exec方法,其中两个的定义为:
public Process exec(String[] cmdarray, String[] envp, File dir)
public Process exec(String command, String[] envp, File dir)
cmdarray和command为要执行的命令,可以将命令和参数作为一个字符串command传递给exec()方法,也可以将命令和参数一个一个的方在数组cmdarray里传递给exec()方法。
envp为环境变量,以name=value的形式放在数组中。dir为工作目录。
可以不要dir参数,或者不要envp和dir参数,这样就多出了其它4个exec()方法。如果没有dir参数或者为null,那么新启动的
进程就继承当前java进程的工作目录。如果没有envp参数或者为null,那么新启动的进程就继承当前java进程的环境变量。
也可以使用ProcessBuilder类启动一个新的程序,该类是后来添加到JDK中的,而且被推荐使用。通过构造函数设置要执行的命令以及
参数,或者也可以通过command()方法获取命令信息后在进行设置。通过directory(File directory)
方法设置工作目录,通过environment()获取环境变量信息来修改环境变量。
在使用ProcessBuilder构造函数创建一个新实例,设置环境变量、工作目录后,可以通过start()方法来启动新程序,与Runtime的exec()方法一样,该方法返回一个Process对象代表启动的程序。
ProcessBuilder与Runtime.exec()方法的不同在于ProcessBuilder提供了
redirectErrorStream(boolean redirectErrorStream)
方法,该方法用来将进程的错误输出重定向到标准输出里。即可以将错误输出都将与标准输出合并。
2、Process
不管通过那种方法启动进程后,都会返回一个Process类的实例代表启动的进程,该实例可用来控制进程并获得相关信息。Process 类提供了执行从进程输入、执行输出到进程、等待进程完成、检查进程的退出状态以及销毁(杀掉)进程的方法:
(1) void destroy()
杀掉子进程。
一般情况下,该方法并不能杀掉已经启动的进程,不用为好。
(2) int exitValue()
返回子进程的出口值。
只有启动的进程执行完成、或者由于异常退出后,exitValue()方法才会有正常的返回值,否则抛出异常。
(3)InputStream getErrorStream()
获取子进程的错误流。
如果错误输出被重定向,则不能从该流中读取错误输出。
(4)InputStream getInputStream()
获取子进程的输入流。
可以从该流中读取进程的标准输出。
(5)OutputStream getOutputStream()
获取子进程的输出流。
写入到该流中的数据作为进程的标准输入。
(6) int waitFor()
导致当前线程等待,如有必要,一直要等到由该 Process 对象表示的进程已经终止。
通过该类提供的方法,可以实现与启动的进程之间通信,达到交互的目的。
3、从标准输出和错误输出流读取信息
从启动其他程序的Java进程看,已启动的其他程序输出就是一个普通的输入流,可以通过getInputStream()和getErrorStream来获取。
对于一般输出文本的进程来说,可以将InputStream封装成BufferedReader,然后就可以一行一行的对进程的标准输出进行处理。
4、举例
(1)Runtime.exec()
import java.io.BufferedReader;
import java.io.File;
import java.io.InputStreamReader;
public class Test1 {
public static void main(String[] args) {
try {
Process p = null;
String line = null;
BufferedReader stdout = null;
//list the files and directorys under C:\
p = Runtime.getRuntime().exec("CMD.exe /C dir", null, new File("C:\\"));
stdout = new BufferedReader(new InputStreamReader(p
.getInputStream()));
while ((line = stdout.readLine()) != null) {
System.out.println(line);
}
stdout.close();
//echo the value of NAME
p = Runtime.getRuntime().exec("CMD.exe /C echo %NAME%", new String[] {"NAME=TEST"});
stdout = new BufferedReader(new InputStreamReader(p
.getInputStream()));
while ((line = stdout.readLine()) != null) {
System.out.println(line);
}
stdout.close();
} catch (Exception e) {
e.printStackTrace();
}
}
(2)ProcessBuilder
import java.io.BufferedReader;
import java.io.File;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
public class Test2 {
public static void main(String[] args) {
try {
List list = new ArrayList();
ProcessBuilder pb = null;
Process p = null;
String line = null;
BufferedReader stdout = null;
//list the files and directorys under C:\
list.add("CMD.EXE");
list.add("/C");
list.add("dir");
pb = new ProcessBuilder(list);
pb.directory(new File("C:\\"));
p = pb.start();
stdout = new BufferedReader(new InputStreamReader(p
.getInputStream()));
while ((line = stdout.readLine()) != null) {
System.out.println(line);
}
stdout.close();
//echo the value of NAME
pb = new ProcessBuilder();
mand(new String[] {"CMD.exe", "/C", "echo %NAME%"});
pb.environment().put("NAME", "TEST");
p = pb.start();
stdout = new BufferedReader(new InputStreamReader(p
.getInputStream()));
while ((line = stdout.readLine()) != null) {
System.out.println(line);
}
stdout.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
5、获取进程的返回值
通常,一个程序/进程在执行结束后会向操作系统返回一个整数值,0一般代表执行成功,非0表示执行出现问题。有两种方式可以用来获取进程的返回
值。一是利用waitFor(),该方法是阻塞的,执导进程执行完成后再返回。该方法返回一个代表进程返回值的整数值。另一个方法是调用
exitValue()方法,该方法是非阻塞的,调用立即返回。但是如果进程没有执行完成,则抛出异常。
6、阻塞的问题
由Process代表的进程在某些平台上有时候并不能很好的工作,特别是在对代表进程的标准输入流、输出流和错误输出进行操作时,如果使用不慎,有可能导致进程阻塞,甚至死锁。
如果将以上事例中的从标准输出重读取信息的语句修改为从错误输出流中读取:
stdout = new BufferedReader(new InputStreamReader(p
.getErrorStream()));
那么程序将发生阻塞,不能执行完成,而是hang在那里。
当进程启动后,就会打开标准输出流和错误输出流准备输出,当进程结束时,就会关闭他们。在以上例子中,错误输出流没有数据要输出,标准输出流中
有数据输出。由于标准输出流中的数据没有被读取,进程就不会结束,错误输出流也就不会被关闭,因此在调用readLine()方法时,整个程序就会被阻
塞。为了解决这个问题,可以根据输出的实际先后,先读取标准输出流,然后读取错误输出流。
但是,很多时候不能很明确的知道输出的先后,特别是要操作标准输入的时候,情况就会更为复杂。这时候可以采用线程来对标准输出、错误输出和标准输入进行分别处理,根据他们之间在业务逻辑上的关系决定读取那个流或者写入数据。
针对标准输出流和错误输出流所造成的问题,可以使用ProcessBuilder的redirectErrorStream()方法将他们合二为一,这时候只要读取标准输出的数据就可以了。
当在程序中使用Process的waitFor()方法时,特别是在读取之前调用waitFor()方法时,也有可能造成阻塞。可以用线程的方法来解决这个问题,也可以在读取数据后,调用waitFor()方法等待程序结束。
总之,解决阻塞的方法应该有两种:
(1)使用ProcessBuilder类,利用redirectErrorStream方法将标准输出流和错误输出流合二为一,在用start()方法启动进程后,先从标准输出中读取数据,然后调用waitFor()方法等待进程结束。
如:
import java.io.BufferedReader;
import java.io.File;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
public class Test3 {
public static void main(String[] args) {
try {
List list = new ArrayList();
ProcessBuilder pb = null;
Process p = null;
String line = null;
BufferedReader stdout = null;
//list the files and directorys under C:\
list.add("CMD.EXE");
list.add("/C");
list.add("dir");
pb = new ProcessBuilder(list);
pb.directory(new File("C:\\"));
//merge the error output with the standard output
pb.redirectErrorStream(true);
p = pb.start();
//read the standard output
stdout = new BufferedReader(new InputStreamReader(p
.getInputStream()));
while ((line = stdout.readLine()) != null) {
System.out.println(line);
}
int ret = p.waitFor();
System.out.println("the return code is " + ret);
stdout.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
(2)使用线程
import java.util.*;
import java.io.*;
class StreamWatch extends Thread {
InputStream is;
String type;
List output = new ArrayList();
boolean debug = false;
StreamWatch(InputStream is, String type) {
this(is, type, false);
}
StreamWatch(InputStream is, String type, boolean debug) {
this.is = is;
this.type = type;
this.debug = debug;
}
public void run() {
try {
PrintWriter pw = null;
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);
String line = null;
while ((line = br.readLine()) != null) {
output.add(line);
if (debug)
System.out.println(type + "" + line);
}
if (pw != null)
pw.flush();
} catch (IOException ioe) {
ioe.printStackTrace();
}
}
public List getOutput() {
return output;
}
}
public class Test5 {
public static void main(String args[]) {
try {
List list = new ArrayList();
ProcessBuilder pb = null;
Process p = null;
// list the files and directorys under C:\
list.add("CMD.EXE");
list.add("/C");
list.add("dir");
pb = new ProcessBuilder(list);
pb.directory(new File("C:\\"));
p = pb.start();
// process error and output message
StreamWatch errorWatch = new StreamWatch(p.getErrorStream(),
"ERROR");
StreamWatch outputWatch = new StreamWatch(p.getInputStream(),
"OUTPUT");
// start to watch
errorWatch.start();
outputWatch.start();
//wait for exit
int exitVal = p.waitFor();
//print the content from ERROR and OUTPUT
System.out.println("ERROR: " + errorWatch.getOutput());
System.out.println("OUTPUT: " + outputWatch.getOutput());
System.out.println("the return code is " + exitVal);
} catch (Throwable t) {
t.printStackTrace();
}
}
}
7、在Java中执行Java程序
执行一个Java程序的关键在于:
(1)知道JAVA虚拟机的位置,即java.exe或者java的路径
(2)知道要执行的java程序的位置
(3)知道该程序所依赖的其他类的位置
举一个例子,一目了然。
(1)待执行的Java类
public class MyTest {
public static void main(String[] args) {
System.out.println("OUTPUT one");
System.out.println("OUTPUT two");
System.err.println("ERROR 1");
System.err.println("ERROR 2");
for(int i = 0; i args.length; i++)
{
System.out.printf("args[%d] = %s.", i, args[i]);
}
}
}
(2)执行该类的程序
import java.util.*;
import java.io.*;
class StreamWatch extends Thread {
InputStream is;
String type;
List output = new ArrayList();
boolean debug = false;
StreamWatch(InputStream is, String type) {
this(is, type, false);
}
StreamWatch(InputStream is, String type, boolean debug) {
this.is = is;
this.type = type;
this.debug = debug;
}
public void run() {
try {
PrintWriter pw = null;
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);
String line = null;
while ((line = br.readLine()) != null) {
output.add(line);
if (debug)
System.out.println(type + "" + line);
}
if (pw != null)
pw.flush();
} catch (IOException ioe) {
ioe.printStackTrace();
}
}
public List getOutput() {
return output;
}
}
public class Test6 {
public static void main(String args[]) {
try {
List list = new ArrayList();
ProcessBuilder pb = null;
Process p = null;
String java = System.getProperty("java.home") + File.separator + "bin" + File.separator + "java";
String classpath = System.getProperty("java.class.path");
// list the files and directorys under C:\
list.add(java);
list.add("-classpath");
list.add(classpath);
list.add(MyTest.class.getName());
list.add("hello");
list.add("world");
list.add("good better best");
pb = new ProcessBuilder(list);
p = pb.start();
System.out.println(mand());
// process error and output message
StreamWatch errorWatch = new StreamWatch(p.getErrorStream(),
"ERROR");
StreamWatch outputWatch = new StreamWatch(p.getInputStream(),
"OUTPUT");
// start to watch
errorWatch.start();
outputWatch.start();
//wait for exit
int exitVal = p.waitFor();
//print the content from ERROR and OUTPUT
System.out.println("ERROR: " + errorWatch.getOutput());
System.out.println("OUTPUT: " + outputWatch.getOutput());
System.out.println("the return code is " + exitVal);
} catch (Throwable t) {
t.printStackTrace();
}
}
}
优先级调度算法如何用JAVA实现
没java的 发段源代码给你 有兴趣自己慢慢理解
#include time.h
#include dos.h
#include math.h
#include conio.h
#include stdio.h
#include stdlib.h
#include time.h
#include graphics.h
#define ESC 0x1b
#define ENTER 0x0d
#define TRUE 1
#define FALSE 0
/*每隔TIME秒就变换一次优先级*/
#define TIME 5
/*数据结构*/
/****************************************************************/
enum _Status/*进程状态枚举*/
{
READY =0,/*就绪*/
RUN,/*执行中*/
SUSPEND,/*挂起*/
};
typedef enum _Status Status;
/****************************************************************/
struct _Pcb/*进程结构*/
{
int PID;/*进程ID,ID为负数的进程为系统后备队列的作业*/
int Time;/*进程运行需要的时间*/
int Prior;/*进程的优先级,越大越优先*/
Status Sts;/*状态*/
struct _Pcb *Next;/*指向本进程队列中下个进程的PCB*/
};
typedef struct _Pcb PCB;
/****************************************************************/
struct _Batch/*多道处理中的道结构*/
{
PCB *pcb;/*该道当前正在处理的进程*/
struct _Batch *Next;/*下一道*/
};
typedef struct _Batch Batch;
/****************************************************************/
/*多道系统相关全局变量*/
PCB *ProcQueue = NULL;/*进程链表,按优先级从大到小排列*/
Batch *BatchQueue = NULL;/*系统多道链表*/
/****************************************************************/
/*动态优先权抢占式调度算法及相关函数声明*/
/****************************************************************/
int InitBatchs(int n);/*初始化多道系统,n为道数*/
int InsertProc(int prior, int time);/*向进程链表中按优先级大小插入一个新进程*/
int InsertIDLE();/*向进程队列中加入后备进程,当系统空闲时将被调入*/
int SortProcQueue();/*将进程链表按优先级从大到小排列*/
int AddBatch();/*增加系统道数*/
int DeleteBatch();/*减少系统道数*/
int UnSuspendProc(int id);/*解除ID为id的进程的挂起状态*/
int UpdateBatchs();/*多道系统根据进程链表进行更新,并将执行完毕的进程删除*/
int PassSeconds(int n);/*系统经过n秒后计算数据并进行优先级调度*/
/****************************************************************/
/*各函数的定义*/
/****************************************************************/
int InitBatchs(int n)
{
int i;
for (i=0; in; ++i)
{
AddBatch();
}
return (UpdateBatchs());
}
int InsertProc(int prior, int time)
{
static int sysid = 0;/*该系统已经加入过多少进程,此值将是新进程的ID*/
PCB *last,*now,*pcb;
pcb = (PCB*)malloc(sizeof(PCB));
if (pcb == NULL) return FALSE;
pcb-Prior = prior;
pcb-Time = time;
pcb-PID = (++sysid);
pcb-Sts = READY;
if (ProcQueue == NULL)/*如果进程队列为空*/
{
ProcQueue = pcb;
pcb-Next = NULL;
return TRUE;
}
last = ProcQueue;
now = last-Next;
if (pcb-Prior last-Prior)/*pcb将排在队头*/
{
pcb-Next = ProcQueue;
ProcQueue = pcb;
return TRUE;
}
while ((now != NULL) (pcb-Prior now-Prior))/*寻找插入位置*/
{
last = now;
now = last-Next;
}
last-Next = pcb;
pcb-Next = now;
return TRUE;
}
int InsertIDLE()
{
PCB *now = ProcQueue;
PCB *idle = (PCB*)malloc(sizeof(PCB));
if (idle == NULL) return FALSE;
idle-PID = -1;
idle-Prior = -1;
idle-Sts = SUSPEND;
idle-Time = -1;
idle-Next = NULL;
if (ProcQueue == NULL)
{
ProcQueue = idle;
return TRUE;
}
while(now-Next != NULL)
{
now = now-Next;
}
now-Next = idle;
return TRUE;
}
int SortProcQueue()
{ /*冒泡排序*/
PCB *last, *now;
int b = FALSE;/*上次遍历是否无交换产生*/
if (ProcQueue==NULL || ProcQueue-Next==NULL)/*如果链表中无进程或只有一个进程*/
return FALSE;
while (!b)
{
b = TRUE;
last=ProcQueue;
now=last-Next;
if (last-Prior now-Prior)
{
ProcQueue = now;
last-Next = now-Next;
now-Next = last;
b = FALSE;
last = ProcQueue;
now = last-Next;
}
while (now-Next!=NULL)
{
if ((now-Prior)(now-Next-Prior))
{
last-Next = now-Next;
now-Next = now-Next-Next;
last-Next-Next = now;
b = FALSE;
}
else
last = last-Next;
now = last-Next;
}
}
return TRUE;
}
int AddBatch()
{
Batch *bt = (Batch*)malloc(sizeof(Batch));
if (bt==NULL) return FALSE;
bt-Next = BatchQueue;
BatchQueue = bt;
bt-pcb = NULL;
return (InsertIDLE());
}
int DeleteBatch()
{
Batch *bt = BatchQueue;
PCB *last, *now;
if (BatchQueue==NULL || BatchQueue-Next==NULL)/*如果只剩最后一道则不删除*/
return FALSE;
if (ProcQueue==NULL || ProcQueue-Next==NULL)/*如果只有最后一个后备空闲进程*/
return FALSE;/**/
last = ProcQueue;
now = last-Next;
while (now-Next != NULL)/*查找到最后一个进程,该进程必定是后备空闲进程*/
{
last = now;
now = last-Next;
}
if (now==NULL || now-PID=0)/*未查找到后备进程*/
return FALSE;/**/
free(now);
last-Next = NULL;
BatchQueue = BatchQueue-Next;
free(bt);
return TRUE;
}
int UnSuspendProc(int id)
{
PCB *now = ProcQueue;
if (ProcQueue==NULL) return FALSE;
while (now != NULL)
{
if (now-PID == id)
{
now-Sts = READY;
return TRUE;
}
}
return FALSE;
}
int UpdateBatchs()
{
Batch *bt = BatchQueue;
PCB *last = ProcQueue, *now;
while (bt != NULL)
{
bt-pcb = NULL;
bt = bt-Next;
}
if (ProcQueue == NULL) return TRUE;
while (last-Sts==RUN last-PID=0 last-Time=0)
{
ProcQueue = ProcQueue-Next;
free(last);
last = ProcQueue;
}
now = last-Next;
while (now != NULL)
{
if (now-Sts==RUN now-PID=0 now-Time=0)/*如果该进程是运行中的一般进程并已执行完毕*/
{
last-Next = now-Next;
free(now);
}
else
last = last-Next;
now = last-Next;
}
bt = BatchQueue;
now = ProcQueue;
while (bt != NULL now != NULL)
{
bt-pcb = now;
now-Sts = RUN;
bt = bt-Next;
now = now-Next;
}
while (now != NULL)
{
if (now-Sts == RUN)
{
now-Sts = SUSPEND;
}
now = now-Next;
}
return TRUE;
}
int PassSeconds(int n)
{
static int time = 0;
int i=0, ProcEnd = FALSE;
PCB *pcb = ProcQueue;
Batch *bt = BatchQueue;
if (bt == NULL) return FALSE;
time += n;
if (time=TIME)
{
i = time/TIME;/*经过多少时间段*/
time = time%TIME;
}
while (bt != NULL)/*更新进程运行时间*/
{
if (bt-pcb-PID=0)
{
bt-pcb-Time -= n;
if (bt-pcb-Time = 0)/*进程结束*/
{
ProcEnd = TRUE;
}
}
bt = bt-Next;
}
if (i 0)
{
while (pcb != NULL)/*更新进程优先权(动态优先权)*/
{
if (pcb-Sts == RUN pcb-PID=0)/*运行的进程优先权降低*/
{
pcb-Prior -= i;
if (pcb-Prior 0)
pcb-Prior = 0;
}
else if (pcb-Sts == SUSPEND pcb-PID=0)/*挂起的进程优先权升高*/
pcb-Prior += i;
pcb = pcb-Next;
}
}
if (i0)
SortProcQueue();/*如果优先级有变动则重新排序*/
if (ProcEnd || i0)
{
UpdateBatchs();/*更新多道进程*/
}
return TRUE;
}
/****************************************************************/
/*图形界面相关函数*/
/****************************************************************/
/*表格的单位宽度和高度*/
#define WIDTH 64
#define HEIGHT 12
void *black=NULL;/*背景色方格,使用它擦出表格中的图形*/
int InitGraph()/*初始化图形界面*/
{
int GraphDriver; /* The Graphics device driver */
int GraphMode; /* The Graphics mode value */
int ErrorCode;
GraphDriver = DETECT; /* Request auto-detection */
initgraph( GraphDriver, GraphMode, "" );
ErrorCode = graphresult(); /* Read result of initialization*/
if( ErrorCode != grOk )
{ /* Error occured during init */
printf(" Graphics System Error: %s\n", grapherrormsg( ErrorCode ) );
getch();
return FALSE;
}
cleardevice();
black = (void*)malloc(imagesize(1,1,WIDTH-1,HEIGHT-1));
getimage(1,1,WIDTH-1,HEIGHT-1,black);
DrawFrame();
DrawData();
return TRUE;
}
int DrawFrame()/*画边框和表头*/
{
settextjustify(CENTER_TEXT, CENTER_TEXT);
gprintf(320, HEIGHT/2-1, "Multi-Batch System Emulation");
settextjustify(LEFT_TEXT, TOP_TEXT);
moveto(0,HEIGHT);
lineto(0,479);
lineto(639,479);
lineto(639,HEIGHT);
lineto(0,HEIGHT);
line(WIDTH*4,HEIGHT,WIDTH*4,479);
line(WIDTH*7,HEIGHT,WIDTH*7,479);
line(0,HEIGHT*2,639,HEIGHT*2);
line(0,HEIGHT*3,639,HEIGHT*3);
gprintf(HEIGHT*0+2,HEIGHT*1+2,"System Batchs");/*系统多道列表头*/
gprintf(HEIGHT*0+2,HEIGHT*2+2,"Batch");
gprintf(WIDTH*1+2,HEIGHT*2+2,"ProcID");
gprintf(WIDTH*2+2,HEIGHT*2+2,"Time");
gprintf(WIDTH*3+2,HEIGHT*2+2,"Prior");
gprintf(WIDTH*4+2,HEIGHT*1+2,"Suspended Processes");/*挂起队列列表头*/
gprintf(WIDTH*4+2,HEIGHT*2+2,"ProcID");
gprintf(WIDTH*5+2,HEIGHT*2+2,"Time");
gprintf(WIDTH*6+2,HEIGHT*2+2,"Prior");
gprintf(WIDTH*7+2,HEIGHT*1+2,"Ready Processes");/*就绪队列列表头*/
gprintf(WIDTH*7+2,HEIGHT*2+2,"ProcID");
gprintf(WIDTH*8+2,HEIGHT*2+2,"Time");
gprintf(WIDTH*9+2,HEIGHT*2+2,"Prior");
}
int DrawData()/*绘制系统数据*/
{
int numRun=0, numSus=0, numRed=0;/*运行挂起和就绪的进程各有多少*/
PCB* now = ProcQueue;
int x=0, y=0;
while (now != NULL)
{
switch(now-Sts)
{
case RUN:
x = WIDTH*1;
y = HEIGHT*(3+(numRun++));
break;
case SUSPEND:
x = WIDTH*4;
y = HEIGHT*(3+(numSus++));
break;
case READY:
x = WIDTH*7;
y = HEIGHT*(3+(numRed++));
break;
}
if (now-Sts==RUN)/*该进程为正在运行的进程*/
{
putimage(x-WIDTH+1,y+1,black,COPY_PUT);
gprintf(x-WIDTH+2,y+2,"%d",numRun);
}
if (now-PID=0)/*该进程不是后备进程*/
{
putimage(x+1,y+1,black,COPY_PUT);
gprintf(x+2,y+2,"%d",now-PID);
putimage(x+1+WIDTH,y+1,black,COPY_PUT);
gprintf(x+WIDTH+2,y+2,"%d",now-Time);
putimage(x+1+WIDTH*2,y+1,black,COPY_PUT);
gprintf(x+WIDTH*2+2,y+2,"%d",now-Prior);
}
else
{
putimage(x+1,y+1,black,COPY_PUT);
putimage(x+1+WIDTH,y+1,black,COPY_PUT);
putimage(x+1+WIDTH*2,y+1,black,COPY_PUT);
gprintf(x+2,y+2,"system idle process");
}
now = now-Next;
}
}
int DlgGetNum(char *buf,int l,int t,int r,int b,int gettime)
{
char ch;
int pos=0;
bar(l,t,r,b);
gprintf(l+10,t+5,"Add new Process");
if (gettime)
gprintf(l+10,t+20,"input the time:");
else
gprintf(l+10,t+20,"input the priority:");
while (1)
{
ch = getch();
if (ch == ENTER)/*如果输入了回车键*/
{
if(pos!=0)/*如果位置不在第一位(回车键不准第一个输入)*/
{
buf[pos]='\0';
break;
}
}
else if (ch='0' ch='9')
{
buf[pos++]=ch;
buf[pos]='\0';
}
else if (ch == ESC)
{
return FALSE;
}
else/*其他按键均按BackSpace处理*/
{
--pos;
buf[pos]='\0';
}
if (pos0)
{ pos=0; buf[pos]='\0';}
else if (pos4)/*最多输入4位数*/
{ pos=4; buf[pos]='\0';}
bar(l,t+35,r,t+47);
gprintf(l+50,t+35,buf);
}
return TRUE;
}
int NewProcDlg()
{
int l=200,t=150,r=380,b=200,pos=0,prior=0,time=0;
char buf[5],ch;
PCB *pcb;
void* bg = (void*)malloc(imagesize(l,t,r,b));
getimage(l,t,r,b,bg);
setfillstyle(1,2);
flushall();
/*******输入优先级**********/
if (!DlgGetNum(buf,l,t,r,b,FALSE))
goto exit;
prior = atoi(buf);
/*******输入时间**********/
pos=0;
buf[pos]='\0';
if (!DlgGetNum(buf,l,t,r,b,TRUE))
goto exit;
time = atoi(buf);
InsertProc(prior, time);
exit:
putimage(l,t,bg,COPY_PUT);
free(bg);
return TRUE;
}
int gprintf( int xloc, int yloc, char *fmt, ... )/*图形系统中的格式输出*/
{
va_list argptr; /* Argument list pointer */
char str[140]; /* Buffer to build sting into */
int cnt; /* Result of SPRINTF for return */
va_start( argptr, format ); /* Initialize va_ functions */
cnt = vsprintf( str, fmt, argptr ); /* prints string to buffer */
outtextxy( xloc, yloc, str ); /* Send string in graphics mode */
va_end( argptr ); /* Close va_ functions */
return( cnt ); /* Return the conversion count */
}
/****************************************************************/
/*main函数*/
int main()
{
clock_t start=0, end=0;
char kb;
InitBatchs(3);/*初始化为3道系统*/
InitGraph();
while (1)
{
start = end = clock();
while (!kbhit())
{
start = clock();
if ((start-end)/18.2 = 1)/*时间过了一秒*/
{
start = end = clock();
PassSeconds(1);
cleardevice();
DrawFrame();
DrawData();
}
}
kb = getch();
switch (kb)
{
case ESC:
closegraph();
return 0;
case 'w':
AddBatch();
UpdateBatchs();
cleardevice();
DrawFrame();
DrawData();
break;
case 's':
DeleteBatch();
UpdateBatchs();
cleardevice();
DrawFrame();
DrawData();
break;
case 'i':
NewProcDlg();
UpdateBatchs();
DrawFrame();
DrawData();
break;
}
}
return 0;
}
关于进程调度算法模拟java和进程调度算法模拟程序设计的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
发布于:2022-12-09,除非注明,否则均为
原创文章,转载请注明出处。