「Java分布式接口限流」spring接口限流
今天给各位分享Java分布式接口限流的知识,其中也会对spring接口限流进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、java分布式架构有哪些技术
- 2、北大青鸟java培训:分布式限流的运行原理?
- 3、redission简单实现分布式限流组件
- 4、分布式解决方案之:限流
- 5、分布式限流
- 6、分布式限流Sentinel
java分布式架构有哪些技术
既然是分布式系统,系统间通信的技术就不可避免的要掌握。
首先,我们必须掌握一些基本知识,例如网络通信协议(例如TCP / UDP等),网络IO(Blocking-IO,NonBlocking-IO,Asyn-IO),网卡(多队列等)。 了解有关连接重用,序列化/反序列化,RPC,负载平衡等的信息。
在学习了这些基本知识之后,您基本上可以在分布式系统中编写一个简单的通信模块,但这实际上还远远不够。 现在,您已经进入了分布式字段,您已经对规模有很多要求。 这意味着需要一种通信程序,该程序可以支持大量连接,高并发性和低资源消耗。
大量的连接通常会有两种方式:
大量client连一个server
当前在NonBlocking-IO非常成熟的情况下,支持大量客户端的服务器并不难编写,但是在大规模且通常是长连接的情况下,有一点需要特别注意 ,即服务器挂起时不可能所有客户端都在某个时间点启动重新连接。 那基本上是一场灾难。 我见过一些没有经验的类似案例。 客户端规模扩大后,服务器基本上会在重新启动后立即刷新。 大量传入连接中断(当然,服务器的积压队列首先应设置为稍大一些)。 可以使用的通常方法是在客户端重新连接之前睡眠一段随机的时间。 另外,重连间隔采用避让算法。
一个client连大量的server
有些场景也会出现需要连大量server的现象,在这种情况下,同样要注意的也是不要并发同时去建所有的连接,而是在能力范围内分批去建。
除了建连接外,另外还要注意的地方是并发发送请求也同样,一定要做好限流,否则很容易会因为一些点慢导致内存爆掉。
这些问题在技术风险上得考虑进去,并在设计和代码实现上体现,否则一旦随着规模上去了,问题一时半会还真不太好解。
高并发这个点需要掌握CAS、常见的lock-free算法、读写锁、线程相关知识(例如线程交互、线程池)等,通信层面的高并发在NonBlocking-IO的情况下,最重要的是要注意在整体设计和代码实现上尽量减少对io线程池的时间占用。
低资源消耗这点的话NonBlocking-IO本身基本已经做到。
伸缩性
分布式系统基本上意味着规模不小。 对于此类系统,在设计时必须考虑可伸缩性。 在体系结构图上绘制的任何点,如果请求量或数据量继续增加,该怎么办? 通过添加机器来解决。 当然,此过程不需要考虑无限的情况。 如果您有经验的建筑师,从相对较小的规模到非常大型的范围,那么优势显然并不小,而且它们也将越来越稀缺。 。
横向可扩展性(Scale Out)是指通过增加服务器数量来提高群集的整体性能。 垂直可伸缩性(Scale Up)是指提高每台服务器的性能以提高集群的整体性能。 纵向可扩展性的上限非常明显,而分布式系统则强调水平可伸缩性。
分布式系统应用服务最好做成无状态的
应用服务的状态是指运行时程序因为处理服务请求而存在内存的数据。分布式应用服务最好是设计成无状态。因为如果应用程序是有状态的,那么一旦服务器宕机就会使得应用服务程序受影响而挂掉,那存在内存的数据也就丢失了,这显然不是高可靠的服务。把应用服务设计成无状态的,让程序把需要保存的数据都保存在专门的存储上(eg. 数据库),这样应用服务程序可以任意重启而不丢失数据,方便分布式系统在服务器宕机后恢复应用服务。
伸缩性的问题围绕着以下两种场景在解决:
无状态场景
对于无状态场景,要实现随量增长而加机器支撑会比较简单,这种情况下只用解决节点发现的问题,通常只要基于负载均衡就可以搞定,硬件或软件方式都有;
无状态场景通常会把很多状态放在db,当量到一定阶段后会需要引入服务化,去缓解对db连接数太多的情况。
有状态场景
所谓状态其实就是数据,通常采用Sharding来实现伸缩性,Sharding有多种的实现方式,常见的有这么一些:
2.1 规则Sharding
基于一定规则把状态数据进行Sharding,例如分库分表很多时候采用的就是这样的,这种方式支持了伸缩性,但通常也带来了很复杂的管理、状态数据搬迁,甚至业务功能很难实现的问题,例如全局join,跨表事务等。
2.2 一致性Hash
一致性Hash方案会使得加机器代价更低一些,另外就是压力可以更为均衡,例如分布式cache经常采用,和规则Sharding带来的问题基本一样。
2.3 Auto Sharding
Auto Sharding的好处是基本上不用管数据搬迁,而且随着量上涨加机器就OK,但通常Auto Sharding的情况下对如何使用会有比较高的要求,而这个通常也就会造成一些限制,这种方案例如HBase。
2.4 Copy
Copy这种常见于读远多于写的情况,实现起来又会有最终一致的方案和全局一致的方案,最终一致的多数可通过消息机制等,全局一致的例如zookeeper/etcd之类的,既要全局一致又要做到很高的写支撑能力就很难实现了。
即使发展到今天,Sharding方式下的伸缩性问题仍然是很大的挑战,非常不好做。
上面所写的基本都还只是解决的方向,到细节点基本就很容易判断是一个解决过多大规模场景问题的架构师,:)
稳定性
作为分布式系统,必须要考虑清楚整个系统中任何一个点挂掉应该怎么处理(到了一定机器规模,每天挂掉一些机器很正常),同样主要还是分成了无状态和有状态:
无状态场景
对于无状态场景,通常好办,只用节点发现的机制上具备心跳等检测机制就OK,经验上来说无非就是纯粹靠4层的检测对业务不太够,通常得做成7层的,当然,做成7层的就得处理好规模大了后的问题。
有状态场景
对于有状态场景,就比较麻烦了,对数据一致性要求不高的还OK,主备类型的方案基本也可以用,当然,主备方案要做的很好也非常不容易,有各种各样的方案,对于主备方案又觉得不太爽的情况下,例如HBase这样的,就意味着挂掉一台,另外一台接管的话是需要一定时间的,这个对可用性还是有一定影响的;
全局一致类型的场景中,如果一台挂了,就通常意味着得有选举机制来决定其他机器哪台成为主,常见的例如基于paxos的实现。
可维护性
维护性是很容易被遗漏的部分,但对分布式系统来说其实是很重要的部分,例如整个系统环境应该怎么搭建,部署,配套的维护工具、监控点、报警点、问题定位、问题处理策略等等。
北大青鸟java培训:分布式限流的运行原理?
分布式编程架构技术我们在前几期的文章中已经给大家简单分析过很多次了,今天我们就一起来了解一下API网关分布式限流的运行原理都有哪些。
API网关中针对一个API、API分组、接入应用APPID,IP等进行限流。
这些限流条件都将会产生一个限流使用的key,在后续的限流中都是对这个key进行限流。
限流算法通常在API网关中可以采用令牌桶算法实现。
必须说明一点的是分布式限流由于有网络的开销,TPS的支持隔本地限流是有差距的,因此在对于TPS要求很高的场景,建议采用本地限流进行处理。
下面讨论我们应该采用redis的哪一种分布式锁的方案:由于redis事务要得到锁的效果需要在高TPS时会产生大量的无效的访问请求,所以不建议在这种场景下使用。
SETNX/EX的锁方案会产生在过期时间的问题,同时也有异步复制master数据到slave的问题。
相比lua方案会产生更多的不稳定性。
我建议采用lua的方案来实施分布式锁,因为都是单进程单线程的执行,因此在TPS上和二种方案没有大的区别,而且由于只是一个lua脚本在执行,甚至是可能纯lua执行可能会有更高的TPS。
当然是lua脚本中可能还是会去设置过期时间,但是应用server宕机并不会影响到redis中的锁。
当然master异步复制的问题还是有,但是并不会造成问题,因为数据只会有1个lua脚本执行问题,下一个执行就正常了。
在实现方案的时候使用了Jedis库,广东java课程认为有一些问题在方案的实现层面我已经去做过验证了,可能也会是读者的疑问。
redission简单实现分布式限流组件
某个三方API接口限制调用频率为200/min,但是某项业务功能中需要频繁的去调用该接口。尽量不去触发限流规则,因此在内部接口调用前先行限流。
本着接入时间成本考虑以及包含分布式场景,选用redission在目前看来是比较好的选择。
分布式解决方案之:限流
限流在日常生活中限流很常见,例如去有些景区玩,每天售卖的门票数是有限的,例如 2000 张,即每天最多只有 2000 个人能进去游玩。那在我们工程上限流是什么呢?限制的是 「流」,在不同场景下「流」的定义不同,可以是 每秒请求数、每秒事务处理数、网络流量 等等。通常意义我们说的限流指代的是限制到达系统的并发请求数,使得系统能够正常的处理部分用户的请求,来保证系统的稳定性。
日常的业务上有类似秒杀活动、双十一大促或者突发新闻等场景,用户的流量突增,后端服务的处理能力是有限的,如果不能处理好突发流量,后端服务很容易就被打垮。另外像爬虫之类的不正常流量,我们对外暴露的服务都要以最大恶意为前提去防备调用者。我们不清楚调用者会如何调用我们的服务,假设某个调用者开几十个线程一天二十四小时疯狂调用你的服务,如果不做啥处理咱服务基本也玩完了,更胜者还有ddos攻击。
对于很多第三方开放平台来说,不仅仅要防备不正常流量,还要保证资源的公平利用,一些接口资源不可能一直都被一个客户端占着,也需要保证其他客户端能正常调用。
计数器限流也就是最简单的限流算法就是计数限流了。例如系统能同时处理 100 个请求,保存一个计数器,处理了一个请求,计数器就加一,一个请求处理完毕之后计数器减一。每次请求来的时候看看计数器的值,如果超过阈值就拒绝。计数器的值要是存内存中就算单机限流算法,如果放在第三方存储里(例如Redis中)集群机器访问就算分布式限流算法。
一般的限流都是为了限制在指定时间间隔内的访问量,因此还有个算法叫固定窗口。
它相比于计数限流主要是多了个时间窗口的概念,计数器每过一个时间窗口就重置。规则如下:
这种方式也会面临一些问题,例如固定窗口临界问题:假设系统每秒允许 100 个请求,假设第一个时间窗口是 0-1s,在第 0.55s 处一下次涌入 100 个请求,过了 1 秒的时间窗口后计数清零,此时在 1.05 s 的时候又一下次涌入100个请求。虽然窗口内的计数没超过阈值,但是全局来看在 0.55s-1.05s 这 0.1 秒内涌入了 200 个请求,这其实对于阈值是 100/s 的系统来说是无法接受的。
为了解决这个问题,业界又提出另外一种限流算法,即滑动窗口限流。
滑动窗口限流解决固定窗口临界值的问题,可以保证在任意时间窗口内都不会超过阈值。相对于固定窗口,滑动窗口除了需要引入计数器之外还需要记录时间窗口内每个请求到达的时间点,因此对内存的占用会比较多。
规则如下,假设时间窗口为 1 秒:
但是滑动窗口和固定窗口都无法解决短时间之内集中流量的冲击问题。 我们所想的限流场景是: 每秒限制 100 个请求。希望请求每 10ms 来一个,这样我们的流量处理就很平滑,但是真实场景很难控制请求的频率,因为可能就算我们设置了1s内只能有100个请求,也可能存在 5ms 内就打满了阈值的情况。当然对于这种情况还是有变型处理的,例如设置多条限流规则。不仅限制每秒 100 个请求,再设置每 10ms 不超过 2 个,不过带来的就是比较差的用户体验。
而漏桶算法,可以解决时间窗口类的痛点,使得流量更加平滑。
如下图所示,水滴持续滴入漏桶中,底部定速流出。如果水滴滴入的速率大于流出的速率,当存水超过桶的大小的时候就会溢出。
规则如下:
水滴对应的就是请求。
与线程池实现的方式方式如出一辙。
面对突发请求,服务的处理速度和平时是一样的,这并非我们实际想要的。我们希望的是在突发流量时,在保证系统平稳的同时,也要尽可能提升用户体验,也就是能更快地处理并响应请求,而不是和正常流量一样循规蹈矩地处理。
而令牌桶在应对突击流量的时候,可以更加的“激进”。
令牌桶其实和漏桶的原理类似,只不过漏桶是定速地流出,而令牌桶是定速地往桶里塞入令牌,然后请求只有拿到了令牌才能通过,之后再被服务器处理。
当然令牌桶的大小也是有限制的,假设桶里的令牌满了之后,定速生成的令牌会丢弃。
规则:
令牌桶的原理与JUC的Semaphore 信号量很相似,信号量可控制某个资源被同时访问的个数,其实和拿令牌思想一样,不同的是一个是拿信号量,一个是拿令牌。信号量用完了返还,而令牌用了不归还,因为令牌会定时再填充。
对比漏桶算法可以看出 令牌桶更适合应对突发流量 ,假如桶内有 100 个令牌,那么这100个令牌可以马上被取走,而不像漏桶那样匀速的消费。不过上面批量获取令牌也会致使一些新的问题出现,比如导致一定范围内的限流误差,举个例子你取了 10 个此时不用,等下一秒再用,那同一时刻集群机器总处理量可能会超过阈值,所以现实中使用时,可能不会去考虑redis频繁读取问题,转而直接采用一次获取一个令牌的方式,具体采用哪种策略还是要根据真实场景而定。
1、计数器 VS 固定窗口 VS 滑动窗口
2、漏桶算法 VS 令牌桶算法
总的来说
单机限流和分布式限流本质上的区别在于 “阈值” 存放的位置,单机限流就是“阀值”存放在单机部署的服务/内存中,但我们的服务往往是集群部署的,因此需要多台机器协同提供限流功能。像上述的计数器或者时间窗口的算法,可以将计数器存放至 Redis 等分布式 K-V 存储中。又如滑动窗口的每个请求的时间记录可以利用 Redis 的 zset 存储,利用 ZREMRANGEBYSCORE 删除时间窗口之外的数据,再用 ZCARD 计数,
可以看到,每个限流都有个阈值,这个阈值如何定是个难点。定大了服务器可能顶不住,定小了就“误杀”了,没有资源利用最大化,对用户体验不好。一般的做法是限流上线之后先预估个大概的阈值,然后不执行真正的限流操作,而是采取日志记录方式,对日志进行分析查看限流的效果,然后调整阈值,推算出集群总的处理能力,和每台机子的处理能力(方便扩缩容)。然后将线上的流量进行重放,测试真正的限流效果,最终阈值确定,然后上线。
其实真实的业务场景很复杂,需要限流的条件和资源很多,每个资源限流要求还不一样。
一般而言,我们不需要自己实现限流算法来达到限流的目的,不管是接入层限流还是细粒度的接口限流,都有现成的轮子使用,其实现也是用了上述我们所说的限流算法。
具体的使用还是很简单的,有兴趣的同学可以自行搜索,对内部实现感兴趣的同学可以下个源码看看,学习下生产级别的限流是如何实现的。
限流具体应用到工程还是有很多点需要考虑的,并且限流只是保证系统稳定性中的一个环节,还需要配合降级、熔断等相关内容。
分布式限流
限流是对 出入流量 进行控制 , 防止大量流入,导致资源不足,系统不稳定。
限流系统是对资源访问的控制组件 , 控制主要有两个功能 , 限流策略和熔断策略,对不同的系统有不同的熔断策略诉求,
有的系统希望直接拒绝、有的系统希望排队等待、有的系统希望服务降级、有的系统会定制自己的熔断策略,这里只对 限流策略 这个功能做详细的设计。
Guava RateLimiter提供了令牌桶算法实现:平滑突发限流(SmoothBursty) 和 平滑预热限流(SmoothWarmingUp)实现
即一个时间窗口内的请求数,如想限制某个接口/服务 每秒/每分钟/每天的 请求数/调用量。如一些基础服务会被很多其他系统调用,
比如商品详情页服务会调用基础商品服务调用,但是怕因为更新量比较大,将基础服务打挂,这时我们需要对每秒/每分钟的调用量进行限速;
此次控制分布式瞬发限流的设计类似于 窗口最大请求数设计业务请求,不满足类似于Guava RateLimiter中的特性( 瞬发限流特性 )
接下来将实现一种分布式 瞬发限流的实现 (令牌桶算法实现与RateLimiter类似,但基于分布式的实现)
distributed-current-limiter
分布式限流Sentinel
众所周知,互联网电商的各类活动是越来越多,例如削减男同胞钱包厚度的双十一、618、双十二、各类秒杀活动等,几乎所有的互联网电商企业都会参与其中,冲击GMV,会电商平台带来巨大的流量与可观的利润。
作为互联网电商中的一员,我自己所属的公司虽然远比不上淘宝、京东等,但作为社交电商领域的领头羊,我们在上述对于电商企业及其特殊的日子,流量也是不容小觑的。
好了,让我们进入这期的主题。例如在双十一、或者周年庆等这种特殊的日子,当12点刚到那一刻,巨大的用户流量涌入你们的系统,访问量突然剧增时,我们是如何保证系统的可用性、稳定性。我们的解决方案主要是通过Sentinel的限流、降级、熔断(增加服务器数量就不说了)以及消息中间件的削峰(我会专门写一期关于消息中间件的文章,到时候大家可以看看)。没错,本期的主角出现了,他就是 Sentinel ,阿里开源的面向分布式服务框架的轻量级流量控制框架。官网如下:
以下是另一个开源的流量控制框架 hystrix 与Sentinel的对比
分布式系统中,限流的资源可以是一个http接口,也可使是某个分布式应用中的API;一般我们针对C端的http接口进行限流,针对API进行熔断降级。
限制请求的数量,限制某段时间内的请求总量对于超出的总量的请求,可以直接拒绝,也可以在请求的时候对请求分组,允许特殊请求进来,剩下的拒绝,也可以放入消息队列,削峰填谷。
限流的实现方式:
服务降级是从整个系统的负荷情况出发和考虑的,对某些负荷会比较高的情况,为了预防某些功能(业务场景)出现负荷过载或者响应慢的情况,在其内部暂时舍弃对一些非核心的接口和数据的请求,而直接返回一个提前准备好的fallback(退路)错误处理信息。这样,虽然提供的是一个有损的服务,但却保证了整个系统的稳定性和可用性。例如:当双11活动时,把无关交易的服务统统降级,如查看历史订单、工单等等。
在微服务架构中,微服务是完成一个单一的业务功能,这样做的好处是可以做到解耦,每个微服务可以独立演进。但是,一个应用可能会有多个微服务组成,微服务之间的数据交互通过远程过程调用完成。这就带来一个问题,假设微服务A调用微服务B和微服务C,微服务B和微服务C又调用其它的微服务。如果调用链路上某个微服务的调用响应时间过长或者不可用,对微服务A的调用就会占用越来越多的系统资源,进而引起系统崩溃,所谓的“ 雪崩效应 ”。
熔断机制是应对雪崩效应的一种微服务链路保护机制 。服务熔断的作用类似于我们家用的保险丝,当某服务出现不可用或响应超时的情况时,为了防止整个系统出现雪崩,暂时停止对该服务的调用。熔段解决如下几个问题:
本源码解析以限流为例,降级具体实现可自行参考源码 Sentinel采用滑动窗口算法来实现限流的。限流的直接表现是在执行 Entry nodeA = SphU.entry(资源名字) 的时候抛出 FlowException 异常。FlowException 是BlockException 的子类,您可以捕捉 BlockException 来自定义被限流之后的处理逻辑。
由上可知,会先初始化一个限流规则,initFlowRule方法中将创建一个限流规则FlowRule对象,主要限流参数如下
并设置其相应的限流规则属性,最后通过FlowRuleManager.loadRules(rules)加载限流规则。
限流规则初始化之后,通过entry= SphU.entry(resource)触发内部初始化。
从 SphU.entry() 方法往下执行会进入到 Sph.entry() ,Sph的默认实现类是 CtSph,而最终会进入CtSph 的entry 方法
通过我们给定的资源去封装了一个 StringResourceWrapper ,然后传入自己的重载方法,继而调用 entryWithPriority(resourceWrapper, count, false, args):
由上述方法可知,主要是为了获取该资源对应的资源处理链,让我们来看下slotChain是如何获取的
当Map缓存中不存在ProcessorSlotChain实例,则具体通过 SlotChainProvider 去构造处理链
继续让我们来看下slotChainBuilder的build方法中做了些什么
我们可以看出上述底层源码是一个标准的责任链设计模式,通过查看ProcessorSlot的具体实现类,我们可以知道该责任链中的具体节点如图所示
执行对应的这些节点,具有有不同的职责,例如:
下图所示是各个slot对应的entry方法的具体实现
我们以StatisticSlot为例,来看看这些具体实现类内部的逻辑是怎样的。
请求通过了sentinel的流控等规则,再通过node.addPassRequest() 将当次请求记录下来
addPassRequest方法如下
addPass方法如下
WindowWrap主要属性如下
我们再看看获取当前窗口的方法 data.currentWindow()
我们再回到
获取到窗口以后通过 wrap.value().addPass(count)增加统计的 QPS。而这里的 wrap.value() 得到的是之前提到的 MetricBucket ,在 Sentinel 中QPS相关数据的统计结果是维护在这个类的 LongAdder[] 中,最终由这个指标来与我们实现设置好的规则进行匹配,查看是否限流,也就是 StatisticSlot的entry 方法中的。在执行StatisticSlot的entry前都要先进入到FlowSlot的entry方法进行限流过滤:
让我们进入checkFlow的内部
再此处我们拿到了设置的 FlowRule ,循环匹配资源进行限流过滤。这就是Sentinel 能做到限流的原因。
我们可以通过Sentinel的客户端查看接入了sentinel的各个系统。可针对系统中的各个资源设置相应的限流规则,如QPS或者线程数;或者设置相应的降级规则,如平均RT,异常比例以及异常数。
Java分布式接口限流的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于spring接口限流、Java分布式接口限流的信息别忘了在本站进行查找喔。
发布于:2022-12-07,除非注明,否则均为
原创文章,转载请注明出处。